Abstract
Platelet additive solutions (PASs) facilitate improved recovery of plasma and may reduce the severity and/or frequency of plasma-associated transfusion reactions. Current apheresis platelet (PLT) PAS products contain approximately 30 to 40% residual plasma. In an effort to further decrease the residual plasma, two in vitro studies were conducted with PLTs suspended in 5% plasma and a reformulated PAS-3, named PAS-5, that contains additional salts, glucose, and bicarbonate. In Study 1, PLTs suspended in 5% plasma/95% PAS-5 were prepared directly on a separator (Amicus, Fenwal, Inc.) without additional centrifugation or washing. In Study 2, a double unit of hyperconcentrated Amicus PLTs in plasma was collected, divided, and centrifuged to prepare a control unit in 100% plasma and a paired test unit in 5% plasma/95% PAS-5. The in vitro properties of PLTs were assessed in both studies during 7-day storage at 20 to 24°C with continuous agitation. In Study 1, PLT concentration, pH, mean PLT volume (MPV), HCO(3)(-), pCO(2), pO(2), lactate dehydrogenase, and hypotonic shock response (HSR) did not significantly change during storage. By Day 7, glucose levels and morphology scores modestly decreased (17.6 and 14.4%, respectively) and lactate levels modestly increased (to 7.2 mmol/L). In Study 2, MPV, pH, glucose, pO(2), HSR, and morphology were comparable in control and test PLTs during 7-day storage. Glucose consumption and lactate production were significantly less in test versus control PLTs (p≤0.0015). Extent of shape change and %CD62P-positive test PLTs were less than those of controls (p<0.001). Apheresis PLTs suspended in 5% plasma/95% PAS-5 maintained in vitro properties during 7-day storage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.