Abstract

BackgroundThe replica technique with its modifications (negative replica) has been used for the assessment of marginal fit (MF). However, identification of the boundaries between prosthesis, cement, and abutment is challenging. The recently developed Digital Image Analysis Sequence (DIAS) addresses this limitation. Although DIAS is applicable, its reliability has not yet been proven.The purpose of this study was to verify the DIAS as an acceptable method for the quantitative assessment of MF at cemented crowns, by conducting statistical tests of agreement between different examiners.MethodsOne hundred fifty-one implant-supported experimental crowns were cemented. Equal negative replicas were produced from the assemblies. Each replica was sectioned in six parts, which were photographed under an optical microscope. From the 906 standardized digital photomicrographs (0.65 μm/pixel), 130 were randomly selected for analysis. DIAS included tracing the profile of the crown and the abutment and marking the margin definition points before cementation. Next, the traced and marked outlines were superimposed on each digital image, highlighting the components’ boundaries and enabling MF measurements.One researcher ran the analysis twice and three others once, independently. Five groups of 130 measurements were formed. Intra- and interobserver reliability was evaluated with intraclass correlation coefficient (ICC). Agreement was estimated with the standard error of measurement (SEM), the smallest detectable change at the 95% confidence level (SDC95%), and the Bland and Altman method of limits of agreement (LoA).ResultsMeasured MF ranged between 22.83 and 286.58 pixels. Both the intra- and interobserver reliability were excellent, ICC = 1 at 95% confidence level. The intra- and interobserver SEM and SDC95% were less than 1 and 3 pixels, respectively. The Bland–Altman analysis presented graphically high level of agreement between the mean measurement of the first observer and each of the three other observers’ measurements. Differences between observers were normally distributed. In all three cases, the mean difference was less than 1 pixel and within ± 3 pixels LoA laid at least 95% of differences. T tests of the differences did not reveal any fixed bias (P > .05, not significant).ConclusionThe DIAS is an objective and reliable method able to detect and quantify MF at ranges observed in clinical practice.

Highlights

  • The replica technique with its modifications has been used for the assessment of marginal fit (MF)

  • One of the most widely used methods is the replica technique (RT), and according to which, low viscosity light-body silicone material is applied in the crown, which is seated on the abutment simulating the cementation procedure [14]

  • One hundred thirty digital images were anonymously and randomly analyzed two times by observer 1 and once by each of the three other observers in order to assess the validity of the Digital Image Analysis Sequence (DIAS)

Read more

Summary

Introduction

The replica technique with its modifications (negative replica) has been used for the assessment of marginal fit (MF). Poor MF on the contrary, might accelerate cement dissolution and plaque retention, increasing the risks of biological complications [4,5,6,7] It drastically increases the probability of luting material exposure at the restoration margin [8, 9]. One of the most widely used methods is the replica technique (RT), and according to which, low viscosity light-body silicone material is applied in the crown, which is seated on the abutment simulating the cementation procedure [14]. RT has been modified by making an external impression of the fixed crown on the corresponding abutment and pouring epoxy resin material after setting of the silicone. The marginal fit was measured on the resin replica [37]

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.