Abstract

The purpose of this study was to assess the precision of four-dimensional (4D) phase-contrast magnetic resonance imaging (PCMRI) to measure mean flow and peak velocity (Vmax) in a pulsatile flow phantom and to test its sensitivity to spatial resolution and Venc. The pulsatile flow phantom consisted of a straight tube connected to the systemic circulation of an experimental mock circulatory system. Four-dimensional-PCMR images were acquired using different spatial resolutions (minimum pixel size: 1.5×1.5×1.5mm3) and velocity encoding sensitivities (up to three times Vmax). Mean flow and Vmax calculated from 4D-PCMRI were compared respectively to the reference phantom flow parameters and to Vmax obtained from two-dimensional (2D)-PCMRI. 4D-PCI measured mean flow with a precision of -0.04% to+5.46%, but slightly underestimated Vmax when compared to 2D-PCMRI (differences ranging from -1.71% to -3.85%). 4D PCMRI mean flow measurement was influenced by spatial resolution (P<0.001) with better results obtained with smaller voxel size. There was no effect of Venc on mean flow measurement. Regarding Vmax, neither spatial resolution nor Venc did influence the precision of the measurement. Using an experimental pulsatile flow model 4D-PCMRI is accurate to measure mean flow and Vmax with better results obtained with higher spatial resolution. We also show that Venc up to 3 times higher than Vmax may be used with no effect on these measurements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call