Abstract

The diphtheria toxin A chain (DTA) is a potent cytocidal agent that inactivates elongation factor 2. This activity of DTA inhibits protein synthesis and rapidly leads to cell death through apoptosis. In this paper, we have developed a simple in vitro assay for DTA activity in which in vitro-translated DTA is used to inhibit the translation of proteins in wheat germ extracts. Inhibition of translation by DTA is dependent on cofactor NAD +, and the analysis of an attenuated DTA mutant indicates that this in vitro assay accurately reflects the in vivo activity of DTA. We have also identified aspartic acid at residue 8 (Asp-8) of DTA as a site of cleavage by the cell-death protease caspase-3. Cleavage of DTA by caspase-3 inactivates its ability to inhibit translation in wheat germ extracts. Conservative mutations at Asp-8 render DTA resistant to cleavage by caspase-3, but only slightly affect the ability of DTA to inhibit translation in vitro. Moreover, caspase-3-resistant DTA mutants are toxic in cells in tissue culture. The in vitro assay that we describe here will be useful for the rapid analysis of DTA activity and the development of DTA mutants with altered biological properties that may be of therapeutic value. Lastly, these studies serve as a prototype for the creation of caspase-resistant effector molecules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call