Abstract

BackgroundStaphylococcus aureus more than any other human pathogen is a better model for the study of the adaptive evolution of bacterial resistance to antibiotics, as it has demonstrated a remarkable ability in its response to new antibiotics. This study was designed to investigate the in vitro transfer of mecA gene from methicillin resistant S. aureus to methicillin susceptible S. aureus.ResultThe recipient transconjugants were resistant to erythromycin, cefpodoxime and were mecA positive. PCR amplification of mecA after mix culture plating on Luria Bertani agar containing 100 μg/mL showed that 75% of the donor and 58.3% of the recipient transconjugants were mecA positive. Additionally, 61.5% of both the donor cells and recipient transconjugants were mecA positive, while 46.2% and 41.75% of both donor and recipient transconjugants were mecA positive on LB agar containing 50 μg/mL and 30 μg/mL respectively.ConclusionIn this study, the direction of transfer of phenotypic resistance as well as mecA was observed to have occurred from the donor to the recipient strains. This study affirmed the importance of horizontal transfer events in the dissemination of antibiotics resistance among different strains of MRSA.

Highlights

  • Staphylococcus aureus more than any other human pathogen is a better model for the study of the adaptive evolution of bacterial resistance to antibiotics, as it has demonstrated a remarkable ability in its response to new antibiotics

  • This study affirmed the importance of horizontal transfer events in the dissemination of antibiotics resistance among different strains of methicillin resistant S. aureus (MRSA)

  • Bacterial strains and culture conditions Six (6) methicillin resistant S. aureus (MRSA) and four (4) methicillin susceptible S. aureus (MSSA) strains isolated from humans (SH1, SH4 and SH8), animals (SDG2, SDG3, SDG4, SEQ1, SEQ5 and SCH4) and environment (SEV1) obtained from previous studies as reported by Aklilu et al [9, 10] were used in this experiment

Read more

Summary

Introduction

Staphylococcus aureus more than any other human pathogen is a better model for the study of the adaptive evolution of bacterial resistance to antibiotics, as it has demonstrated a remarkable ability in its response to new antibiotics. Staphylococcus aureus is a good model better than any other human pathogen that exemplifies the successful adaptation to the therapeutic effect of antibiotics as it has demonstrated a unique ability in rapidly acquiring resistance to new antibiotics. It is one of the pathogens though extensively studied but yet, still surprises us with new and dynamic means of antibiotic resistance development. The integration of the SCCmec into the genome culminates into the formation of two hybrid site at either ends of the SCCmec dubbed the attL and the attR [5] It is well-established that methicillin susceptible S. aureus (MSSA) became methicillin resistant S. aureus (MRSA) following the acquisition of genomic island carrying methicillin resistance determinant mecA [6]. The evolutionary origin as well as detail mechanism of transfer mecA is not fully understood [4, 7, 8]

Methods
Findings
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.