Abstract

While structuring of the bacterial nucleoid by nucleoid-associated proteins (NAPs) is critical for proper chromosomal organization and compaction, DNA-dependent RNA polymerase (RNAP) must frequently interact with and overcome the barriers these NAPs impose upon transcription. One particular NAP in Escherichia coli that influences transcription is the histone-like nucleoid structuring protein, H-NS, that binds to DNA and forms nucleoprotein filaments. To specifically investigate the effect that H-NS filaments have on RNAP elongation, we developed an in vitro transcription assay to assess transcript elongation by RNAP when transcribing DNA bound by an H-NS filament. In this method, initiation and elongation by RNAP are uncoupled by initiating transcription in the presence of three rNTPs to halt elongation just downstream of the promoter. Before elongation is restarted, an H-NS filament is formed so that elongation occurs on an H-NS nucleoprotein filament template. We also describe visualization and analysis of the transcription products from the nucleoprotein template which provides insight into how H-NS and RNAP interact. This method is a starting point to determine effects of NAPs on RNAP elongation in a variety of conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.