Abstract

Contrast-enhanced magnetic resonance (MR) imaging methods have been proposed for non-invasive evaluation of osteoarthritis (OA). We measured cell toxicities of cartilage-targeted low-generation dendrimer-linked nitroxide MR contrast agents and gadopentetate dimeglumine (Gd-DTPA) on cultured chondrocytes. A long-term Swarm rat chondrosarcoma chondrocyte-like cell line was exposed for 48-h to different salts (citrate, maleate, tartrate) and concentrations of generation one or two diaminobutyl-linked nitroxides (DAB4-DLN or DAB8-DLN), Gd-DTPA, or staurosporine (positive control). Impact on microscopic cell appearance, MTT spectrophotometric assays of metabolic activity, and quantitative PicoGreen assays of DNA content (cell proliferation) were measured and compared to untreated cultures. Chondrocyte cultures treated with up to 7.5 mM Gd-DTPA for 48-h had no statistical differences in DNA content or MTT reaction compared to untreated cultures. At all doses, DAB4-DLN citrate treated cultures had results similar to untreated and Gd-DTPA-treated cultures. At doses >1 mM, DAB4-DLN citrate treated cultures showed statistically greater DNA and MTT reaction than maleate and tartrate DAB4-DLN salts. Cultures exposed to 5 mM or 7.5 mM DAB8-DLN citrate exhibited rounded cells, poor cell proliferation, and barely detectable MTT reaction. Treatment with 0.1 μM staurosporine caused chondrocyte death. Long-term exposure, greater than clinically expected, to either DAB4-DLN citrate or Gd-DTPA had no detectable toxicity with results equivalent to untreated cultures. DAB4-DLN citrate was more biocompatible than either the maleate or tartrate salts. Cells exposed for 48-h to 5 mM or 7.5 mM DAB8-DLN salts demonstrated significant cell toxicity. Further evaluation of DAB8-DLN with clinically appropriate exposure times is required to determine the maximum useful concentration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.