Abstract
These experiments were undertaken to determine the potential for estradiol-17 beta (E2), 2-hydroxyestradiol-17 beta (2-OH-E2) and 4-hydroxyestradiol-17 beta (4-OH-E2) to regulate prostaglandin (PG) E and F2 alpha synthesis by pig endometrium. Endometrium was collected from pigs on d 10 of pregnancy and incubated (15 to 20 mg/well) for three 2-h periods in 2 ml of medium in 24-well culture plates. At the end of each period, the medium was removed and frozen. Later media were thawed and assayed for PGE and PGF2 alpha. During Periods 2 and 3, the medium contained 0, 25, 50, 100 or 150 microM 2-OH-E2 (Exp. 1); 0, 25 or 50 microM 4-OH-E2 (Exp. 2); or 0, 25 or 50 microM E2 (Exp. 3). Each experiment was a factorial with 2-OH-E2, 4-OH-E2 or E2 as one main effect and 0 or 1 mM ascorbate as a second main effect. Ascorbate decreased (P less than .01) PGE and PGF2 alpha release in all experiments. Two-hydroxyestradiol-17 beta decreased (P less than .01) PGE and PGF2 alpha release into the medium during Periods 2 and 3 in a dose-dependent manner (Exp. 1). In Exp. 2, 4-OH-E2 decreased (P less than .07) endometrial release of PGE and PGF2 alpha in Periods 2 and 3 and increased (P less than .01) the PGE:PGF2 alpha in Period 3. In Exp. 3, E2 decreased release of PGE during Period 3 and PGF2 alpha release during Period 2. The PGE:PGF2 alpha was not altered by E2.(ABSTRACT TRUNCATED AT 250 WORDS)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.