Abstract

Abstract Our studies on the role of cholesterol in prion infection/replication showed that brains and peripheral cells of sheep susceptible-to or suffering-from Scrapie were characterized by an altered cholesterol homeostasis, and that drugs affecting cholesterol ester pool were endowed with selective anti-prion activity in N2a cell lines infected with the 22L and RML prion strains. In these prion-infected N2a cell lines, we now report increased anti-prion activity of dual-drug combinations consisting of cholesterol ester modulators associated with prion inhibitors. Synergism was obtained with the cholesterol ester modulators everolimus, pioglitazone, progesterone, and verapamil associated with the anti-prion chlorpromazine, and with everolimus and pioglitazone associated with the anti-prion quinacrine. In addition, comparative lipid analyses in prion-infected vs. uninfected N2a cells, demonstrated a derangement of type and distribution of cholesterol ester, free cholesterol, and triglyceride pools in the infected cells. Single-drug treatments differently affected synthesis of the various lipid forms, whereas combined drug treatments appeared to restore a lipid profile similar to that of the untreated-uninfected cells. We conclude that the anti-prion synergistic effects of cholesterol ester modulators associated with the cholesterol-interfering anti-prion drugs chlorpromazine and quinacrine may arise from the ability of combined drugs to re-establish lipid homeostasis in the prion-infected cells. Overall, these data suggest that inhibition of prion replication can be readily potentiated by combinatorial drug treatments and that steps of cholesterol/cholesterol ester metabolism may represent suitable targets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call