Abstract

BackgroundRecently, Plasmodium falciparum parasites bearing Pfdhfr I164L single mutation were found in Madagascar. These new mutants may challenge the use of antifolates for the intermittent preventive treatment of malaria during pregnancy (IPTp). Assays with transgenic bacteria suggested that I164L parasites have a wild-type phenotype for pyrimethamine but it had to be confirmed by testing the parasites themselves.MethodsThirty Plasmodium falciparum clinical isolates were collected in 2008 in the south-east of Madagascar. A part of Pfdhfr gene encompassing codons 6 to 206 was amplified by PCR and the determination of the presence of single nucleotide polymorphisms was performed by DNA sequencing. The multiplicity of infection was estimated by using an allelic family-specific nested PCR. Isolates that appeared monoclonal were submitted to culture adaptation. Determination of IC50s to pyrimethamine was performed on adapted isolates.ResultsFour different Pfdhfr alleles were found: the 164L single mutant-type (N = 13), the wild-type (N = 7), the triple mutant-type 51I/59R/108N (N = 9) and the double mutant-type 108N/164L (N = 1). Eleven out 30 (36.7%) of P. falciparum isolates were considered as monoclonal infection. Among them, five isolates were successfully adapted in culture and tested for pyrimethamine in vitro susceptibility. The wild-type allele was the most susceptible with a 50% inhibitory concentration (IC50) < 10 nM. The geometric mean of IC50 of the three I164L mutant isolates was 6-fold higher than the wild-type with 61.3 nM (SD = 3.2 nM, CI95%: 53.9-69.7 nM). These values remained largely below the IC50 of the triple mutant parasite (13,804 nM).ConclusionThe IC50s of the I164L mutant isolates were significantly higher than those of the wild-type (6-fold higher) and close from those usually reported for simple mutants S108N (roughly10-fold higher than wild type). Given the observed values, the determination of IC50s directly on parasites did not confirm what has been found on transgenic bacteria. The prevalence increase of the Pfdhfr I164L single mutant parasite since 2006 could be explained by the selective advantage of this allele under sulphadoxine-pyrimethamine pressure. The emergence of highly resistant alleles should be considered in the future, in particular because an unexpected double mutant-type allele S108N/I164L has been already detected.

Highlights

  • Plasmodium falciparum parasites bearing P. falciparum dihydrofolate reductase gene (Pfdhfr) I164L single mutation were found in Madagascar

  • Plasmodium falciparum samples were split into two different aliquots: cryopreserved aliquots stored in liquid nitrogen for culture adaptation and in vitro assays, and fresh blood aliquots stored at -20°C until genomic DNA extraction

  • Five isolates were successfully adapted in culture (1 isolate with wild-type allele, three isolates with 164L single mutant-type allele and one isolate with triple mutant-type 51I/59R/108N allele) and tested for PYR in vitro susceptibility

Read more

Summary

Introduction

Plasmodium falciparum parasites bearing Pfdhfr I164L single mutation were found in Madagascar These new mutants may challenge the use of antifolates for the intermittent preventive treatment of malaria during pregnancy (IPTp). Plasmodium falciparum malaria remains a major cause of morbidity and mortality in endemic areas, affecting mainly African children under five years of age and pregnant women [1]. In these areas, artemisinin combinations therapy (ACT) is recommended as first-line treatment for uncomplicated P. falciparum malaria, while the intermittent preventive treatment of Analysis of the molecular basis of anti-malarial drug resistance has demonstrated that mutations in the dihydrofolate reductase (dhfr) and dihydropteroate synthase genes are associated with development of SP resistance. Previous published data have shown that the triple mutant N51I/C59R/S108N have largely spread in Madagascar but the quadruple mutant has not been reported so far

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.