Abstract

The in vitro susceptibilities of the reference strain Leishmania donovani MHOM/ET/67/L82 to sodium stibogluconate, amphotericin B, miltefosine, and the experimental compound PX-6518 were determined for extracellular log-phase promastigotes, established axenic amastigotes, fresh spleen-derived amastigotes, and intracellular amastigotes in primary mouse peritoneal macrophages. Susceptibility to amphotericin B did not differ across the various axenic models (50% inhibitory concentrations [IC50], 0.6 to 0.7 microM), and amphotericin B showed slightly higher potency against intracellular amastigotes (IC50, 0.1 to 0.4 microM). A similar trend was observed for miltefosine, with comparable efficacies against the extracellular (IC50, 0.4 to 3.8 microM) and intracellular (IC50, 0.9 to 4.3 microM) stages. Sodium stibogluconate, used either as Pentostam or as a crystalline substance, was inactive against all axenic stages (IC50, >64 microg SbV/ml) but showed good efficacy against intracellular amastigotes (IC50, 22 to 28 microg SbV/ml); the crystalline substance was about two to three times more potent (IC50, 9 to 11 microg SbV/ml). The activity profile of PX-6518 was comparable to that of sodium stibogluconate, but at a much higher potency (IC50, 0.1 microg/ml). In conclusion, the differential susceptibility determines which in vitro models are appropriate for either drug screening or resistance monitoring of clinical field isolates. Despite the more complex and labor-intensive protocol, the current results support the intracellular amastigote model as the gold standard for in vitro Leishmania drug discovery research and for evaluation of the resistance of field strains, since it also includes host cell-mediated effects. Axenic systems can be recommended only for compounds for which no cellular mechanisms are involved, for example, amphotericin B and miltefosine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.