Abstract

FUZ is regarded as a planar cell polarity effector that controls multiple cellular processes during vertebrate development. However, the role of FUZ in tumor biology remains poorly studied. Our purpose of this study is to discover the physiological effects and mechanism of FUZ in non-small-cell lung cancer (NSCLC) in vitro. With the help of bioinformatics analysis, we noticed that the expression level of FUZ negatively correlates with prognosis of NSCLC patients. Exogenous FUZ expression markedly promoted cell proliferation of NSCLC cells. The phosphorylation of Erk1/2, STAT3 and related signaling molecules were induced activated after FUZ over-expression. FUZ also plays an important role in cell motility by regulating cell signaling pathways and inducing epithelial to mesenchymal transition (EMT). FUZ promotes EMT along with the up-regulation of N-cadherin, vimentin, Zeb1, Twist1 and decreased level of E-cadherin. Furthermore, we also carried out FUZ directed siRNA treatments to prove the above observations. Knockdown of FUZ resulted in delayed cell growth as well as impaired cell migration and reversed EMT phonotype. Importantly, we reported for the first time that FUZ is a BNIP3-interacting protein. Loss of FUZ resulted in decreased BNIP3 protein level, but no influence on BNIP3 mRNA level, suggesting weakened stability of BNIP3 protein. Overall, our results in vitro show that FUZ is responsible for NSCLC progression and metastasis, suggesting that FUZ can be a potential therapeutic target for NSCLC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.