Abstract

Electroporation, applied as a non-thermal ablation method has proven to be effective for focal prostate treatment. In this study, we performed pre-clinical research, which aims at exploring the specific impact of this so-called calcium electroporation on prostate cancer. First, in an in-vitro study of DU 145 cell lines, microsecond electroporation (μsEP) parameters were optimized. We determined hence the voltage that provides both high permeability and viability of these prostate cancer cells. Subsequently, we compared the effect of μsEP on cells’ viability with and without calcium administration. For high-voltage pulses, the cell death’s mechanism was evaluated using flow-cytometry and confocal laser microscopy. For lower-voltage pulses, the influence of electroporation on prostate cancer cell mobility was studied using scratch assays. Additionally, we applied calcium-binding fluorescence dye (Fluo-8) to observe the calcium uptake dynamic with the fluorescence microscopy. Moreover, the molecular dynamics simulation visualized the process of calcium ions inflow during μsEP. According to our results calcium electroporation significantly decreases the cells viability by promoting apoptosis. Furthermore, our data shows that the application of pulsed electric fields disassembles the actin cytoskeleton and influences the prostate cancer cells’ mobility.

Highlights

  • Cell membrane integrity can be largely affected when the latter are exposed to pulsed electric fields (PEFs) of high enough intensity

  • The standalone microsecond investigated on cells suspended in the calcium free

  • We have shown that an increased intracellular concentration of calcium enhances the EP-induced actin disruption after higher voltage PEFs

Read more

Summary

Introduction

Cell membrane integrity can be largely affected when the latter are exposed to pulsed electric fields (PEFs) of high enough intensity The application of such electric pulses is believed to trigger formation of highly permeable spots (domains) in their lipid membrane [1,2]. This phenomenon is called electroporation (EP), and the changes induced depend on the intensity of the applied electric fields and can be either reversible, i.e., cells recover their integrity, or irreversible, in which case, the cells turn necrotic [3]. For instance, Molecules 2020, 25, 5406; doi:10.3390/molecules25225406 www.mdpi.com/journal/molecules

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call