Abstract

In this study, a novel electroactive tetreaniline-containing degradable polyelectrolyte multilayer film (PEM) coating [(poly(l-glutamic acid)-graft-tetreaniline/poly(l-lysine)-graft-tetreaniline)n, (PGA-g-TA/PLL-g-TA)n] was designed and fabricated by layer-by-layer (LbL) assembly method. Compared with the nongrafted PEMs, the tetreaniline-grafted PEMs showed higher roughness and stiffness in micro/nanoscale structures. The special surface characteristics and the typical electroconductive properties were more beneficial for adhesion, proliferation, and differentiation of preosteoblast MC3T3-E1 cells. Moreover, the enhanced effects were observed on the modulation of MC3T3-E1 cells that differentiated into maturing osteoblasts, when the electroactive PEMs were coupled with electrical stimulus (ES), especially in the early phase of the osteoblast differentiation. The alkaline phosphatase (ALP) activity, calcium deposition, immunofluorescence staining, and RT-qPCR were evaluated on the differentiation of preosteoblast. These data indicate that the comprehensive effects through coupling electroactive scaffolds with electrical stimulus are better to develop bioelectric strategies to control cell functions for bone regeneration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.