Abstract

High mobility group box (HMGB) members are DNA binding proteins with varied functions present across kingdoms. The mechanism by which HMGBs with varying number of HMG boxes are able to carry out similar functions, are poorly understood. Moreover, how non-canonical DNAs are recognized by HMGB proteins is not clear. To address these, we carried out detailed biochemical and computational studies to characterize two HMGB members- Kinetoplast associated protein (KAP6) of Trypanosoma and High mobility group protein 1 (HMO1) from yeast. Here, we report that KAP6 binds non-canonical DNAs tighter than B-form DNA. Among non-canonical DNAs, KAP6 has the highest affinity for splayed and flap structures, but least for Holliday Junction (HJ). In contrast, HMO1 binds tighter to HJ. Computational analysis show that the secondary structural elements involved in DNA interaction are conserved in HMGB members KAP6 and mitochondrial transcription factor A. Simulation analyses revealed that the ~90° bend in DNA induced by KAP6 HMG box is a result of two ~45° bends, by Helix 1 and Helix 2 of the protein. Our data also suggests that the orthologs of HMO1 and KAP6 are oligomers in solution, which could be necessary for their functioning such as DNA bending and looping.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call