Abstract
An in vitro simulation of fatigue loading of ultra-high molecular weight polyethylene (UHMWPE) knee components was carried out on a knee simulator and on a rolling and sliding wear tester. Tibial components for the knee simulator were gamma-sterilized, implantable components taken from manufacturing inventory. The rolling/sliding UHMWPE discs were machined from bar stock and either gamma sterilized in air and accelerated aged, or left as non-sterilized (controls). Cracking and delamination of samples that had been gamma sterilized in air and aged were observed in both types of tests. Contact fatigue damage was visible in as few as 150,000 cycles using the knee simulator at loads of 122 N (275 1b). The rolling/sliding samples showed signs of damage in as few as 130,000 cycles with an estimated stress of 15 MPa and 25 per cent sliding. However, cracking and delamination were not generated in the never-sterilized or recently sterilized controls. UHMWPE that has been gamma sterilized in air and aged is shown to be susceptible to contact fatigue damage. These results are important to the interpretation of in vitro total knee replacement simulations used to assess the performance of tibial bearings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.