Abstract
BackgroundAnti-malarial drugs are the major focus in the prevention and treatment of malaria. Artemisinin-based combination therapy (ACT) is the WHO recommended first-line treatment for Plasmodium falciparum malaria across the endemic world. Also ACT is increasingly relied upon in treating Plasmodium vivax malaria where chloroquine is failing. The emergence of artemisinin drug-resistant parasites is a serious threat faced by global malaria control programmes. Therefore, the success of treatment and intervention strategies is highly pegged on understanding the genetic basis of resistance.MethodsHere, resistance in P. falciparum was generated in vitro for artemisinin to produce levels above clinically relevant concentrations in vivo, and the molecular haplotypes investigated. Genomic DNA was extracted using the QIAamp mini DNA kit. DNA sequences of Pfk13, Pfcrt and Pfmdr1 genes were amplified by PCR and the amplicons were successfully sequenced. Single nucleotide polymorphisms were traced by standard bidirectional sequencing and reading the transcripts against wild-type sequences in Codon code Aligner Version 5.1 and NCBI blast.ResultsExposure of parasite strains D6 and W2 to artemisinin resulted in a decrease in parasite susceptibility to artemisinin (W2 and D6) and lumefantrine (D6 only). The parasites exhibited elevated IC50s to multiple artemisinins, with >twofold resistance to artemisinin; however, the resistance index obtained with standard methods was noticeably less than expected for parasite lines recovered from 50 µg/ml 48 h drug pressure. The change in parasite susceptibility was associated with Pfmdr-185K mutation, a mutation never reported before. The Pfcrt-CVMNK genotype (Pfcrt codons 72–76) was retained and notably, the study did not detect any polymorphisms reported to reduce P. falciparum susceptibility in vivo in the coding sequences of the Pfk13 gene.DiscussionThis data demonstrate that P. falciparum has the capacity to develop resistance to artemisinin derivatives in vitro and that this phenotype is achieved by mutations in Pfmdr1, the genetic changes that are also underpinning lumefantrine resistance. This finding is of practical importance, because artemisinin drugs in Kenya are used in combination with lumefantrine for the treatment of malaria.ConclusionArtemisinin resistance phenotype as has been shown in this work, is a decrease in parasites susceptibility to artemisinin derivatives together with the parasite’s ability to recover from drug-induced dormancy after exposure to drug dosage above the in vivo clinical concentrations. The study surmises that Pfmdr1 may play a role in the anti-malarial activity of artemisinin.
Highlights
Anti-malarial drugs are the major focus in the prevention and treatment of malaria
The study surmises that Pfmdr1 may play a role in the anti-malarial activity of artemisinin
This study reports an assessment of anti-malarial resistance marker polymorphisms in Pfmdr1, Pfcrt, and Pfk13 genes in chloroquine resistant W2 and chloroquine sensitive D6 lines cultured in presence of artemisinin
Summary
Artemisinin-based combination therapy (ACT) is the WHO recommended first-line treatment for Plasmodium falciparum malaria across the endemic world. The emergence of artemisinin drug-resistant parasites is a serious threat faced by global malaria control programmes. The World Health Organization (WHO) recommends artemisinin-based combination therapy (ACT) as the first-line treatment for falciparum malaria in all endemic regions [1]. The P. falciparum multidrug resistance 1 gene (Pfmdr1), P. falciparum chloroquine resistance transporter gene (Pfcrt), and kelch propeller region (Pfk13) gene single nucleotide polymorphisms (SNPs) are believed to be markers of resistance to a great number of anti-malarial drugs, including ACT [5, 6]. Recent in vitro work have strongly linked Pfmdr to drug transportation [15]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.