Abstract

The chilling tolerance of doubled haploid (DH) maize plants selected and regenerated from microspores exposed to prooxidants, paraquat or tert-butyl hydroperoxide was determined by monitoring cold-induced changes in the photosynthetic electron transport, CO2 assimilation processes and chlorophyll breakdown in young leaves after cold treatment (8°C for 5 days). The results were compared to those of the non-selected DH line and the original hybrid plants. Chilling stress caused a great reduction in the Fv/Fm, qP and ΔF/Fm’ fluorescence parameters, related to the photosynthetic electron transport processes, and in carbon assimilation, and resulted in chlorophyll breakdown. These changes were less extensive in the selected DH plants, which showed elevated antioxidant capacity both at ambient and at low temperature. Among the antioxidant enzymes tested, the activity of GR and GST was induced by chilling stress to the greatest extent. Correlations between cold-induced changes in the photosynthetic apparatus and the antioxidant capacity of the plants suggested that the better protection against oxidative stress induced by the elevated antioxidant capacity of the plants contributed to protecting the photosynthetic apparatus from cold.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call