Abstract
The logic of using nucleic acids as pharmaceutical reagents is in part based on their capacity to interact with high affinity and specificity with other biological components. Considerable progress has been made over the past 10 years in the development of nucleic acid-based drug molecules using a variety of different technologies. One approach is a combinatorial technology that involves an iterative Darwinian-type in vitro evolution process, which has been termed SELEX for ‘systematic evolution of ligands by exponential enrichment’. The procedure is a highly efficient method of identifying rare ligands from combinatorial nucleic acid libraries of very high complexity. It allows the selection of nucleic acid molecules with desired functions and it has been instrumental in the identification of a number of synthetic DNA and RNA molecules, so-called aptamers that recognise ligands of different chemical origin. The method is fast, it does not require special equipment and the selected aptamers typically bind their target with high affinity and high specificity. Here we summarise the recent examples of the SELEX technique within the context of identifying high-affinity ligands against parasite target molecules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.