Abstract

In the recent years, nanotechnology has attained much attention in the every field of science. The synthesis, characterisation and applications of metallic nanoparticles (MNPs) have become an important branch of nanotechnology. In the current study, MNPs were synthesised through polyols process and applied in vitro to study their effect on medicinally important plant : Artemisia absinthium. The current study strives to check the effect of MNPs, i.e., Ag, Cu and Au on seed germination, root and shoot length, seedling vigour index (SVI) and biochemical profiling in A. absinthium. The seeds were inoculated on MS medium supplemented with various combinations of MNPs suspension. The seed germination was greatly influenced upon the application of MNPs and was recorded highest for the silver nanoparticles (AgNPs) suspensions. The best result for seed germination (98.6%) was obtained in MS medium supplemented with AgNPs as compared to control (92.9%) and other nanoparticles, i.e., copper (69.6%) and gold (56.5%), respectively, after 35 days of inoculation. Significant results were obtained for root length, shoot length and SVI in response to application of AgNPs as compared to copper nanoparticles (CuNPs) and gold nanoparticles (AuNPs). These nanoparticles (NPs) could induce stress in plants by deploying the endogenous mechanism. In response to these stresses, plants produce various defence compounds. Total phenolic content (TPC) and total flavonoid content (TFC) were significant in the MS medium supplemented with AgNPs as compared to other NPs, while DPPH radical scavenging assay (RSA) was highest in AuNPs treated plantlets. The MNPs showed higher toxicity level and enhanced secondary metabolites production, total phenolic content, total flavonoid content, antioxidant activity, superoxide dismutase (SOD) activity and total protein content.

Highlights

  • Nanotechnology is famed as twenty-first century science and it is versatile field which covers almost all the existing branches of science

  • The current study strives to check the effect of metallic nanoparticles (MNPs), i.e., Ag, Cu and Au on seed germination, root and shoot length, seedling vigour index (SVI) and biochemical profiling in A. absinthium

  • Total phenolic content (TPC) and total flavonoid content (TFC) were significant in the MS medium supplemented with AgNPs as compared to other NPs, while DPPH radical scavenging assay (RSA) was highest in AuNPs treated & Mubashir Hussain mubashirhussain_22@hotmail.com

Read more

Summary

Introduction

Nanotechnology is famed as twenty-first century science and it is versatile field which covers almost all the existing branches of science. Nanotechnology has various applications in different fields like biology, physics and chemistry (Lin and Xing 2007). This science deals with the production of minute particles termed as nanoparticles. Nanoparticles have dimension between 1 and 100 nm that serve as a building block for various physical and biological systems (Sun et al 2014). Researchers have started the use of these nanoparticles to enhance the growth, yield, quality, production of secondary metabolites, antioxidants and disease control in plants. Studies on biological applications of various metallic nanoparticles on higher plants are increasing day by day

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.