Abstract
The hydroxyl radical (HO*)- and superoxide anion radical (O* (2))-scavenging activity, as well as the singlet oxygen ((1)O(2))-quenching property of N-substituted indole-2-carboxylic acid esters (INDs) were investigated by deoxyribose degradation assay, a chemiluminescence method and the electron spin resonance (ESR) spin-trapping technique. This novel group of compounds was developed as a search for cyclooxygenase-2 (COX-2)-selective enzyme inhibitors. The results obtained demonstrated that of the 16 compounds examined, five inhibited light emission from the superoxide anion radical (O* (2))-DMSO system by at least 60% at a concentration of 1 mmol/L, nine prevented the degradation of deoxyribose induced by the Fenton reaction system (range 3-78%) or scavenged hydroxyl radicals (HO*) directly (range 8-93%) and 14 showed the (1)O(2)-quenching effect (range 10-74%). These results indicate that majority of the indole esters tested possess the ability to scavenge O(-) (2) and HO radicals and to quench (1)O(2) directly, and consequently may be considered effective antioxidative agents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.