Abstract

On-demand regulation of gene expression in living cells is a central goal of chemical biology and antisense therapeutic development. While significant advances have allowed regulatory modulation through inserted genetic elements, on-demand control of the expression/translation state of a given native gene by complementary sequence interactions remains a technical challenge. Toward this objective, we demonstrate the reversible suppression of a luciferase gene in cell-free translation using Watson-Crick base pairing between the mRNA and a complementary γ-modified peptide nucleic acid (γPNA) sequence with a noncomplementary toehold. Exploiting the favorable thermodynamics of γPNA-γPNA interactions, the antisense sequence can be removed by hybridization of a second, fully complementary γPNA, through a strand displacement reaction, allowing translation to proceed. Complementary RNA is also shown to displace the bound antisense γPNA, opening up possibilities of in vivo regulation by native gene expression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call