Abstract

There has been growing interest in the subject of drug delivery and the design and evaluation of controlled-release systems. The simplest way to control the release of an active agent is to disperse it in an inert polymeric matrix. Controlled-release systems are of interest because they are technologically simple, relatively cheap, and practically unaffected by physiological changes. In this study, a new matrix system was formed by an active principle, metoclopramide hydrochloride, scattered into a biocompatible hydrophobic polymerical mesh, polyamide 12, to achieve sustained and controlled delivery of metoclopramide hydrochloride. This research was conducted to investigate the in vitro drug release behavior from these new inert polymeric matrix tablets. The drug release process was investigated both experimentally and by means of mathematical models. Different models were applied for the evaluation of drug release data. On the basis of our results, a biexponential equation was proposed, Q=Qfast(1)(1 - e(-Kfast t)) + Qslow(2)(1 - e(-Kslow t)), in an attempt to explain the mechanism responsible for the release process. Additionally, the influence of the experimental conditions of the dissolution devices, such as rate of flow and pH of dissolution medium, on the parameters that characterize the release mechanism was studied, and it was found that the main factor was the hydrodynamic condition of rate of flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.