Abstract

Efflux of various amino acids from rat brain slices was determined under resting or depolarizing conditions. Slices of neocortex, hippocampus, striatum, cerebellum, mesodiencephalon, pons-medulla, and spinal cord were depolarized by K+ (50 mM) or veratrine (33 micrograms/ml). The 4-N,N-dimethylamino-azobenzene-4'-isothiocyanate (DABITC) derivatization method of Chang [Biochem. J. 199, 537-545 (1981)] for HPLC was adapted for analysis of amino acids and peptides in superfusion solutions. It allowed the separation and simultaneous detection of the sulfur-containing amino acids cysteine sulfinic acid (CSA), cysteic acid (CA), homocysteine sulfinic acid (HCSA), and homocysteic acid (HCA) at the picomole level. All four were shown to be released on depolarization in a Ca2+-dependent manner from brain slices. CSA and HCSA were released from cortex, hippocampus, mesodiencephalon, and, for HCSA only, striatum. HCA release, observed in all regions, was most prominent in cortex and hippocampus. CA was slightly increased by depolarization in hippocampus and mesodiencephalon. These sulfur-containing amino acids have been shown to exert an excitatory action on CNS neurons. The fact that these sulfur-containing amino acids are released as endogenous substances from nervous tissue supports the hypothesis that they play a role in CNS neurotransmission.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call