Abstract

Pseudouridine (Ψ) is the most common chemical modification in RNA. In eukaryotes and archaea, pseudouridine synthases, mainly guided by box H/ACA snoRNAs, convert uridine to Ψ. Ψ stabilizes RNA structure and alters RNA-RNA and RNA-protein interactions, conferring important roles in gene expression. Notably, several Ψ-linked human diseases have been identified over the years. In addition, Ψ has also been extensively used in developing mRNA vaccines. Furthermore, it has been shown that pseudouridylation can be site-specifically directed to modify specific nonsense codons, leading to nonsense suppression. All of these, together with a need to better understand the specific functions of Ψs, have motivated the development of in vitro pseudouridylation assays using purified and reconstituted box H/ACA RNPs. Here, we describe an in vitro system for box H/ACA RNA-guided RNA pseudouridylation using human cell extracts. We show that a half guide RNA (only one hairpin) is just as functionally competent as the full-length guide RNA (two hairpins) in guiding site-specific pseudouridylation in the human cell extracts. This discovery offers the opportunity for direct delivery of a short guide RNA to human cells to promote site-specific nonsense suppression and therefore has potential clinical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.