Abstract

The galbonolides are 14-membered macrolide antibiotics with a macrocyclic backbone similar to that of erythromycins. Galbonolides exhibit broad-spectrum antifungal activities. Retro-biosynthetic analysis suggests that the backbone of galbonolides is assembled by a type I modular polyketide synthase (PKS). Unexpectedly, the galbonolide biosynthetic gene cluster, gbn, in Streptomyces sp. LZ35 encodes a hybrid fatty acid synthase (FAS)-PKS pathway. In vitro reconstitution revealed the functions of GbnA (an AT-ACP didomain protein), GbnC (a FabH-like enzyme), and GbnB (a novel multidomain PKS module without AT and ACP domains) responsible for assembling the backbone of galbonolides, respectively. To our knowledge, this study is the first biochemical characterization of a hybrid FAS-PKS pathway for the biosynthesis of 14-membered macrolides. The identification of this pathway provides insights into the evolution of PKSs and could facilitate the design of modular pools for synthetic biology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.