Abstract

BackgroundDimocarpus longan is a tropical tree that produces edible fruit. It is a neglected plant species that is listed as near threatened. In spite of its economic value, the propagation of longan cultivar using conventional methods is extremely difficult. The goal of this research is to produce and conserve this plant through in vitro propagation. ResultsIn order to form new shoots, sterilized shoot tip explants were cultured on Murashige and Skoog (MS) medium supplemented with benzyl adenine (BA) or 2-isobentenyl-adenine (2ip). For direct organogenesis, young leaves of new shoots were cultured on MS medium fortified with various concentrations of Thidiazuron (TDZ) or 6-(4-Hydroxy-3-methylbut-2-enylamino purine) (Zeatin). Gibbrellic acid (GA3) at different levels alone or in combination was used for shoot elongation. Also, indole-3-butyric acid (IBA) and naphthalene acetic acid (NAA) were used for root formation. MS medium supplemented with 1.00 mg/l 2ip was suitable for inducing axillary shoots from shoot tips (4.0 axillary shoots/explant). The highest significant 76% and numbers of adventitious buds from leaf base were achieved on MS medium containing 1.0 mg/l TDZ. These buds developed into the longest plantlets on GA3 at 3.0 mg/l and rooted well in ½MS containing 1.50 mg/l IBA plus 0.50 mg/l (NAA). About 70% in vitro plants were successfully acclimatized. The AFLP profile illustrated the genetic stability of gene expression action. The amplified fragment length polymorphisms (AFLPs) profile illustrated the progenies were extremely similar to the mother plants. According to our findings, MS medium containing 25 ppm salicylic acid (SA) and 5 ppm methyl jasmonate (MeJA) produced the highest percentage of apigenin in longan calli (77.09 and 2.637%, w/w). ConclusionA successful and efficient micropropagation protocol has been developed and described here for the first time, and it will be very useful for the clonal propagation and conservation of the near-threatened Dimocarpus longan plant. Micropropagated plants are genetically identical to the donor plant using the AFLP technique. The usefulness of salicylic acid and methyl jasmonate as elicitors for increasing in vitro production of secondary metabolites in plants is demonstrated in this work.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.