Abstract
An efficient indirect in vitro plant regeneration protocol for Dianthus caryophyllus L. cv. ‘Master’ was developed using leaf explants. This study revealed the morphogenetic potential of leaf explant as a source for micropropagation. Murashige and Skoog (MS) medium supplemented with 2.0 mg/l 2,4-dichlorophenoxyacetic acid and 0.5 mg/l Naphthalene acetic acid (NAA) resulted in maximum (94.44%) callus induction. MS medium supplemented with 1.5 mg/l thidiazuron, 0.25 mg/l Kinetin and 0.25 mg/l NAA was found to be highest for average shoot regeneration (80.56%), average number of shoots (6.01) and average shoot length (1.93 cm). For in vitro multiplication of shoots, MS medium supplemented with 2.0 mg/l Kinetin and 0.25 mg/l NAA was found to be the best which resulted in 14.64 average number of microshoots. It was observed that the half strength MS basal medium supplemented with 1.5 mg/l Indole-3-butyric acid and 0.02% activated charcoal showed maximum rooting (98.19%) with 9.60 average number of roots per microshoot having 4.24 cm root length. The in vitro rooted plantlets were hardened gradually and were successfully acclimatized under ex vitro conditions. The genetic variation in the in vitro raised plants was confirmed using DNA based markers [Random Amplified Polymorphic DNA and Inter Simple Sequence Repeats] for assessment of genetic stability of plants raised through indirect regeneration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the National Academy of Sciences, India Section B: Biological Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.