Abstract
Plant model systems are needed to properly conduct basic laboratory studies prior to field applications of phytoremediation. In vitro plant cultures are a useful tool for such research. This study focuses on the removal and/or degradation of 24 persistent organic pollutants under in vitro conditions by Helianthus annuus L (sunflower). The main purpose of exploiting this plant for phytoremediation process is due to its strong adaptability to adverse environments conditions such as resistance to pests, disease, and others. The study of bioremediation effects of all chemical molecules under in vitro conditions showed promising results. Sixteen out of twenty-four compounds evaluated reached up to 87% for remediation. The highest accumulation of pollutants was observed in the roots, showing that these results are consistent with the current literature. Through the study, it was observed effective absorption of POPs with logKow ranging from 4.50 to 6.91. Sunflower phytoremediation process efficiently detected heptachlor, aldrin, heptachlor epoxide, trans-chlordane, chlordane, dieldrin, DDE, DDT, methoxychlor, mirex and decachlorobiphenyl.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.