Abstract

Three mononuclear or dinuclear bis(terpyridine) (tpy) iridium(III) complexes bearing pyren-1-yl (pyr) group(s) were synthesized. Their photophysical properties in water and in vitro photodynamic therapy (PDT) effects toward the human lung epithelial cancer cell line A549 and the human epidermal skin cancer cell line A431 were investigated to evaluate the effects of dinuclear versus mononuclear complexes and the impact of the oligoether substituent at the ligand. All complexes possessed pyr-tpy ligand-associated charge transfer (1CT)/1π,π* absorption bands at 350-550 nm, with the dinuclear complex Ir3 showing the much enhanced absorptivity of this band. These complexes exhibited dual emission upon excitation at >430 nm in most cases, with the emitting states being ascribed to 1ILCT (intraligand charge transfer) and 3π,π*/3CT states, respectively. All complexes exhibited relatively weak to moderate cytotoxicity in the dark but high photocytotoxicity upon broadband visible light irradiation. Among them, the dinuclear complex Ir3 showed the highest intracellular reactive oxygen species (ROS) generation and PDT efficiency compared to its mononuclear counterpart Ir1. Introducing an oligoether substituent on one of the tpy ligands in Ir2 also improved its intracellular ROS generation and PDT efficacy compared to those induced by Ir1. Ir3 induced both mitochondrial dysfunction and lysosomal damage upon light activation toward both cell lines, whereas Ir1 and Ir2 caused both mitochondrial dysfunction and lysosomal damage in A431 cells but only lysosomal damage in A549 cells. The dominant cell death pathway induced by Ir1-Ir3 PDT is apoptosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.