Abstract

The in vitro pharmacology of inosine (Ino), a putative anti-inflammatory compound, has been investigated in smooth muscle preparations, with emphasis on its possible interaction with known inflammatory mediators, as well as capsaicin, an inducer of "neurogenic inflammation". The highest concentration of Ino routinely studied was 1 mM, since 10 mM nonspecifically inhibited many types of smooth muscle motor responses. In the guinea pig isolated ileum or trachea, Ino (1 mM) failed to influence the excitatory effect of capsaicin. The nitric oxide (NO)-mediated relaxant effect of capsaicin in the human colonic circular muscle was not influenced by Ino. Ino only weakly reduced the contractile effect of histamine on the guinea pig ileum. Substance P-mediated nonadrenergic, noncholinergic (NANC) contractions evoked by electrical stimulation in the guinea pig ileum were inhibited by half by Ino (1 mM). Ino showed no or only a weak inhibitory effect on NANC relaxation of the rat ileum. Arachidonic acid- or leukotriene D(4)-induced contractions of the guinea pig ileum were only moderately inhibited by Ino. Collectively, these results indicate that Ino (up to 1 mM) shows no major antagonist activity at histamine H(1) receptors, leukotriene CysLT(1) receptors, the transient receptor potential channel TRPV1 or tachykinin NK(1) or NK(2) receptors, or cyclooxygenase-inhibitory activity. Therefore, its anti-inflammatory activity is probably not associated with these mechanisms. The in vitro methods used in this study are capable of detecting a wide range of biological effects and hence may be recommended as a screening procedure for potential drugs or natural products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.