Abstract

The aim of this study was to investigate the in-vitro performance and fracture resistance of a temporary computer-aided designed and computer-aided manufactured polymethylmethacrylate (CAD/CAM-PMMA) material as implant or tooth-supported single crown with respect to the clinical procedure (permanently bonded/temporarily cemented). Sixty-four crowns were fabricated on implants or human molar teeth simulating (a) labside procedure on prefabricated titanium-bonding base ([TiBase] implant crown bonded in laboratory, screwed chairside), (b) labside procedure ([LAB] standard abutment and implant crown bonded in laboratory, screwed chairside), (c) chairside procedure ([CHAIR] implant crown bonded to abutment), and (d) reference ([TOOTH] crowns luted on prepared human teeth). Crowns were made of a CAD/CAM-PMMA temporary material (TelioCAD, Ivoclar-Vivadent). For investigating the influence of fixation, half of the crowns were permanently (P) or temporarily (T) bonded. Combined thermal cycling and mechanical loading (TCML) was performed simulating a 5-year clinical situation. Fracture force was determined. Data were statistically analyzed (Kolmogorov-Smirnov test, one-way ANOVA; post hoc Bonferroni, α=0.05). All restorations survived TCML without visible failures. Fracture results varied between 3034.3 (Tooth-P) and 1602.9N (Tooth-T) [TOOTH], 1510.5 (TiBase-P) and 963.6N (TiBase-T) [TiBase], 2691.1 (LAB-P) and 2064.5N (LAB-T) [LAB], and 1609.4 (Chair-P) and 1253.0N (Chair-T) [CHAIR]. Tested groups showed significantly (p<0.001) different fracture values. Failure pattern was characterized by fractures in mesial-distal, buccal-oral, or mixed (mesial-distal/buccal-oral) directions, with differences for the individual groups. Temporary CAD/CAM crowns showed no different in-vitro performance but provided different fracture results that depended on cementation, screw channel, and type of abutment. All bonded and screwed PMMA crowns were in a range where clinical application seems not restricted.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.