Abstract
This in vitro study was performed to evaluate the ability of two types of porous bioactive glass scaffolds to support the growth and differentiation of an established osteogenic cell line. The two scaffold types tested included 13-93 glass fiber and trabecular-like scaffolds seeded with murine MLO-A5 cells and cultured for intervals of 2 to 12 days. Culture in MTT-containing medium showed metabolically active cells both on the surface and within the interior of the scaffolds. Scanning electron microscopy revealed well-attached cells on both types of scaffolds with a continual increase in cell density over a 6-day period. Protein measurements also showed a linear increase in cell density during the incubation. Activity of alkaline phosphatase, a key indicator of osteoblast differentiation, increased about 10-fold during the 6-day incubation with both scaffold types. The addition of mineralization media to MLO-A5 seeded scaffolds triggered extensive formation of alizarin red-positive mineralized extracellular material, additional evidence of cell differentiation and completion of the final step of bone formation on the constructs. Collectively, the results indicate that the 13-93 glass fiber and trabecular scaffolds promote the attachment, growth, and differentiation of MLO-A5 osteogenic cells and could potentially be used for bone tissue engineering applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.