Abstract

The interaction of glutathione (GSH) with ascorbic acid and dehydroascorbic acid was examined in in-vitro experiments in order to examine the role of GSH in protecting against the autoxidation of ascorbic acid and in regenerating ascorbic acid by reaction with dehydroascorbic acid. If a buffered solution (pH 7.4) containing 1.0 mM ascorbic acid was incubated at 37°C, there was a rapid loss of ascorbic acid in the presence of oxygen. When GSH was added to this solution, ascorbic acid did not disappear. Maximum protection against ascorbic acid autoxidation was achieved with as little as 0.1 mM GSH. Cupric ions (0.01 mM) greatly accelerated the rate of autoxidation of ascorbic acid, an effect that was inhibited by 0.1 mM GSH. Other experiments showed that GSH complexes with cupric ions, resulting in a lowering of the amount of GSH in solution as measured in GSH standard curves. These results suggest that the inhibition of ascorbic acid autoxidation by GSH involves complexation with cupric ions that catalyze the reaction. When ascorbic acid was allowed to autoxidize at 37°C the subsequent addition of GSH (up to 10 mM) did not lead to the regeneration of ascorbic acid. This failure to detect a direct reaction between GSH and the dehydroascorbic acid formed by oxidation of ascorbic acid under this condition was presumably due to the rapid hydrolysis of dehydroascorbic acid. When conditions were chosen, i.e., low temperature, that promote stability of dehydroascorbic acid, the direct reaction between GSH and dehydroascorbic acid to form ascorbic acid was readily detected. The marked instability of dehydroascorbic acid at 37°C raises questions regarding the efficiency of the redox couple between GSH and dehydroascorbic acid in maintaining the concentration of ascorbic acid in mammalian cells exposed to an oxidative challenge.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call