Abstract

BackgroundPolyether-ether-ketone (PEEK) is increasingly being used for spinal applications. However, because of its biologically inactive nature, there are risks of false joint loosening and sinking. PEEK materials are coated with apatite to enhance the osteoconductive properties. In this study, we aimed to evaluate whether strontium apatite stimulate osteogenesis on the surface of PEEK by using the CO2 laser technique.MethodsWe prepared non-coated disks, laser-exposed disks without apatite, and four types of apatite-coated by laser PEEK disks (hydroxyapatite (HAP), strontium hydroxyapatite (SrHAP), silicate-substituted strontium apatite (SrSiP), and silicate-zinc-substituted strontium apatite (SrZnSiP)). A part of the study objective was testing various types of apatite coatings. Bone marrow mesenchymal cells (BMSCs) of rats were seeded at a density of 2 × 104/cm2 onto each apatite-coated, non-coated, and laser-irradiated PEEK disks. The disks were then placed in osteogenic medium, and alkaline phosphatase (ALP) staining and Alizarin red staining of BMSCs grown on PEEK disks were performed after 14 days of culture. The concentrations of osteocalcin (OC) and calcium in the culture medium were measured on days 8 and 14 of cell culture. Furthermore, mRNA expression of osteocalcin, ALP, runt-related transcription factor 2 (Runx2), collagen type 1a1 (Col1a1), and collagen type 4a1 (Col4a1) was evaluated by qPCR.ResultsThe staining for ALP and Alizarin red S was more strongly positive on the apatite-coated PEEK disks compared to that on non-coated or laser-exposed without coating PEEK disks. The concentration of osteocalcin secreted into the medium was also significantly higher in case of the SrHAP, SrSiP, and SrZnSiP disks than that in the case of the non-coated on day14. The calcium concentration in the PEEK disk was significantly lower in all apatite-coated disks than that in the pure PEEK disks on day 14. In qPCR, OC and ALP mRNA expression was significantly higher in the SrZnSiP disks than that in the pure PEEK disks.ConclusionsOur findings demonstrate that laser bonding of apatite—along with trace elements—on the PEEK disk surfaces might provide the material with surface property that enable better osteogenesis.

Highlights

  • Polyether-ether-ketone (PEEK) is increasingly being used for spinal applications

  • Polyetherether-ketone or PEEK is becoming increasingly common as a material for spinal applications because PEEK has high biocompatibility, radiolucency, and elasticity properties, which are more similar to those of natural bone compared to metal materials [1]

  • PEEK disks were coated with the 6% of hydroxyapatite (HAP), 6% of strontium hydroxyapatite (SrHAP), 6% of silicate-substituted strontium apatite (SrSiP), or 6% of silicate-zinc-substituted strontium apatite (SrZnSiP) and dried at room temperature

Read more

Summary

Introduction

Polyether-ether-ketone (PEEK) is increasingly being used for spinal applications. because of its biologically inactive nature, there are risks of false joint loosening and sinking. We aimed to evaluate whether strontium apatite stimulate osteogenesis on the surface of PEEK by using the CO2 laser technique. Polyetherether-ketone or PEEK is becoming increasingly common as a material for spinal applications because PEEK has high biocompatibility, radiolucency, and elasticity properties, which are more similar to those of natural bone compared to metal materials [1]. Because it is biologically inactive, which hampers osseointegration, its clinical use poses several risks, such as false joints, loosening, and sinking [2, 3]. The effects of surface modification were studied by in vitro osteogenic cell culture experiments using rat bone marrow mesenchymal stem cells (BMSCs) [10, 15]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call