Abstract
Abuse of synthetic drugs is widespread worldwide. Studies indicate that piperazine designer drugs act as substrates at dopaminergic and serotonergic receptors and/or transporters in the brain. This work aimed to investigate the cytotoxicity of N-benzylpiperazine, 1-(3-trifluoromethylphenyl)piperazine, 1-(4-methoxyphenyl)piperazine and 1-(3,4-methylenedioxybenzyl)piperazine in the differentiated human neuroblastoma SH-SY5Y cell line. Cytotoxicity was evaluated after 24 h incubations through the MTT reduction and neutral red uptake assays. Oxidative stress (reactive oxygen and nitrogen species production and glutathione content) and energetic (ATP content) parameters, as well as intracellular Ca(2+), mitochondrial membrane potential, DNA damage (comet assay) and cell death mode were also evaluated. Complete cytotoxicity curves were obtained after 24 h incubations with each drug. A significant decrease in intracellular total glutathione content was noted for all the tested drugs. All drugs caused a significant increase of intracellular free Ca(2+) levels, accompanied by mitochondrial hyperpolarization. However, ATP levels remained unchanged. The investigation of cell death mode revealed a predominance of early apoptotic cells. No genotoxicity was found in the comet assay. Among the tested drugs, 1-(3-trifluoromethylphenyl)piperazine was the most cytotoxic. Overall, piperazine designer drugs are potentially neurotoxic, supporting concerns on risks associated with the abuse of these drugs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.