Abstract

BackgroundMuscle-derived stem cells (MDSCs) contribute to the repair of injured muscles. However, the myogenicity of MDSCs generated from patients with Duchenne muscular dystrophy (DMD) relative to healthy individuals remains unclear. MethodsA human DMD model was established using the stem cells prepared from muscle derived from patients with DMD (DMD-hMDSCs). The expression of myogenic lineage-specific markers in MDSCs was examined with immunofluorescence, real-time polymerase chain reaction, and western blotting. ResultsIt was demonstrated that, compared with cells from healthy subjects, DMD-hMDSCs are primed to self-differentiate in growth-inducing medium (GM) and robustly differentiate into myotubes in differentiation-inducing medium(DM). This feature was termed “myogenesis activation,” and it was speculated that it contributes to the depletion of myogenic progenitors. Furthermore, MDSCs consistently express pax7, but the time-course of this expression does not correlate with the expression of the myogenic lineage-specific markers. ConclusionsThe myogenesis activation in DMD-hMDSCs demonstrated in this study may provide novel mechanistic insights into DMD pathogenesis and potential therapies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call