Abstract

Adhesion to adsorbed pellicles and interspecies co-adhesion to form plaque biofilms involve selective interactions of bacterial adhesins with specific receptors. Our laboratory has devised in vitro assays for co-adhesion between Actinomyces naeslundii and Streptococcus oralis or Porphyromonas gingivalis on saliva-coated mineral and hexadecane droplet substrata. P. gingivalis structures significant for co-adhesion with A. naeslundii include surface vesicles and fimbriae. A family of arginine-specific cysteine proteinases in vesicles may be involved in adherence to bacteria, to host cells, and to matrix proteins. New research from several laboratories has found that such proteinases are processed from genes encoding polyproteins containing both proteinase and hemagglutinin domains. In addition to enzyme-substrate recognition, bacterial adhesion is often determined by specific protein-peptide and lectincarbohydrate recognition. A. naeslundii--salivary prolinerich protein, S. gordonii--salivary alpha-amylase, and Treponema denticola--matrix protein recognition are examples of the former. Co-adhesion of A. naeslundii and S. oralis is an example of the latter. Lactose can selectively desorb A. naeslundii cells from mixed biofilms with S. oralis, a demonstration of the significance of specificity. Although non-specific forces are probably secondary to stereochemical fit in determining the selective range of surfaces that bacteria have evolved to recognize and bind, they probably help stabilize non-covalent bonds within aligned, complementary domains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.