Abstract
Metabolic bone diseases, such as osteoporosis and osteopetrosis, result from an imbalanced bone remodeling process. In vitro bone models are often used to investigate either bone formation or resorption independently, while in vivo, these processes are coupled. Combining these processes in a co-culture is challenging as it requires finding the right medium components to stimulate each cell type involved without interfering with the other cell type's differentiation. Furthermore, differentiation stimulating factors often comprise growth factors in supraphysiological concentrations, which can overshadow the cell-mediated crosstalk and coupling.To address these challenges, we aimed to recreate the physiological bone remodeling process, which follows a specific sequence of events starting with cell activation and bone resorption by osteoclasts, reversal, followed by bone formation by osteoblasts. We used a mineralized silk fibroin scaffold as a bone-mimetic template, inspired by bone's extracellular matrix composition and organization. Our model supported osteoclastic resorption and osteoblastic mineralization in the specific sequence that represents physiological bone remodeling.We also demonstrated how culture variables, such as different cell ratios, base media, and the use of osteogenic/osteoclast supplements, and the application of mechanical load, can be adjusted to represent either a high bone turnover system or a self-regulating system. The latter system did not require the addition of osteoclastic and osteogenic differentiation factors for remodeling, therefore avoiding growth factor use.Our in vitro model for bone remodeling has the potential to reduce animal experiments and advance in vitro drug development for bone remodeling pathologies like osteoporosis. By recreating the physiological bone remodeling cycle, we can investigate cell-cell and cell-matrix interactions, which are essential for understanding bone physiology and pathology. Furthermore, by tuning the culture variables, we can investigate bone remodeling under various conditions, potentially providing insights into the mechanisms underlying different bone disorders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.