Abstract

Current invitro models for human brain arteriovenous malformation (AVM) analyzing the efficacy of embolic materials or flow conditions are limited by a lack of realistic anatomic features of complex AVM nidus. The purpose of this study was to evaluate a newly developed invitro AVM model for embolic material testing, preclinical training, and flow analysis. Three-dimensional (3D) images of the AVM nidus were extracted from 3D rotational angiography from a patient. Inner vascular mold was printed using a 3D printer, coated with polydimethylsiloxanes, and then was removed by acetone, leaving a hollow AVM model. Injections of liquid embolic material and 4-dimensional (4D) flow magnetic resonance imaging (MRI) were performed using the AVM models. Additionally, computational fluid dynamics analysis was performed to examine the flow volume rate as compared with 4D flow MRI. The manufacture of 3D invitro AVM models delivers a realistic representation of human nidus vasculature and complexity derived from patients. The injection of liquid embolic agents performed in the invitro model successfully replicated real-life treatment conditions. The model simulated the plug and push technique before penetration of the liquid embolic material into the AVM nidus. The 4D flow MRI results were comparable to computational fluid dynamics analysis. An invitro human brain AVM model with realistic geometric complexities of nidus was successfully created using 3D printing technology. This AVM model offers a useful tool for training of embolization techniques and analysis of hemodynamics analysis, and development of new devices and materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call