Abstract
This study was undertaken to evaluate an in vitro mitral valve (MV) simulator's ability to mimic the systolic leaflet coaptation, regurgitation, and leaflet mechanics of a healthy ovine model and an ovine model with chronic ischemic mitral regurgitation (IMR). Mitral valve size and geometry of both healthy ovine animals and those with chronic IMR were used to recreate systolic MV function in vitro. A2-P2 coaptation length, coaptation depth, tenting area, anterior leaflet strain, and MR were compared between the animal groups and valves simulated in the bench-top model. For the control conditions, no differences were observed between the healthy animals and simulator in coaptation length (p = 0.681), coaptation depth (p = 0.559), tenting area (p = 0.199), and anterior leaflet strain in the radial (p = 0.230) and circumferential (p = 0.364) directions. For the chronic IMR conditions, no differences were observed between the models in coaptation length (p = 0.596), coaptation depth (p = 0.621), tenting area (p = 0.879), and anterior leaflet strain in the radial (p = 0.151) and circumferential (p = 0.586) directions. MR was similar between IMR models, with an asymmetrical jet originating from the tethered A3-P3 leaflets. This study is the first to demonstrate the effectiveness of an in vitro simulator to emulate the systolic valvular function and mechanics of a healthy ovine model and one with chronic IMR. The in vitro IMR model provides the capability to recreate intermediary and exacerbated levels of annular and subvalvular distortion for which IMR repairs can be simulated. This system provides a realistic and controllable test platform for the development and evaluation of current and future IMR repairs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.