Abstract

Lack of genetic variability and apparent susceptibility of cheetahs ( Acinonyx jubatus) to coronavirus infection has lead to speculation that this species may have immune system deficits. To establish a foundation for evaluation of the immune function, cheetah peripheral blood mononuclear cells (PBM) were stimulated by a panel of six mitogens, and responses compared with those of domestic cat PBM. Individual responses in both species were variable, but evenly distributed throughout the range of stimulation for each mitogen. Proliferation by PBM from domestic cats occured within the same range as that of the cheetahs. However, a significantly lower response to peanut agglutinin (PNA) was observed with domestic cat PBM. Although responses varied between animals, certain individual cheetahs were consistent responders. The decreased values could not be explained by lack of IL-2 responsiveness since exogenous IL-2 significantly enhanced mitogen-stimulated proliferation in 11 of 12 cheetahs tested. The phenotypic distribution of domestic cat and cheetah lymphocyte subpopulations was similar as assessed by immunofluorescence staining for surface immunoglobulin (sIg) and cytotoxic T (Tc) cells (using a specific monoclonal antibody, FT2). Values for B cells (31.2% sIg+) and Tc (28.7% FT2 +) were slightly higher in domestic cats as compared with cheetah PBM (13.3% sIg+; 19.0% FT2+). Even though no species-specific deficits were detected, a significant negative correlation between PHA-stimulated proliferation and percent FT2+ (Tc) cheetah cells was observed. This indicates that proliferation can be used indirectly to assess relative numbers of functional T helper cells in cheetahs. Our studies suggest that these aspects of the cheetah's immune system are comparable with the domestic cat, and establish a basis for in vitro assays evaluating antigen-specific responses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.