Abstract

This study was aimed at evaluating the physico-chemical properties of a porous poly(ε-caprolactone)/carbonated-apatite (PCL/CAp 30/70 w/w) composite to be used as scaffold for bone tissue engineering. The in vitro degradation mechanism of this matrix in different media was evaluated as well as its bioactivity in a simulated body fluid (SBF) buffered at pH 7.4 (37 °C, 28 days). For this purpose, we used vibrational IR and Raman spectroscopy coupled to thermogravimetry (TG) and differential scanning calorimetry (DSC). The samples were analyzed before and after immersion in the above mentioned solution as well as in 0.01 M NaOH solution (pH=12), saline phosphate buffer at pH 7.4 (SPB) and esterase/SPB. A control PCL sample was analyzed before the addition of the apatitic component. As regards the untreated samples, the method of synthesis utilized for preparing the composite was found to lower the crystallinity degree. The CAp component revealed to be constituted of a B-type CAp with a 3% carbonate content. After immersion in SBF solution, vibrational analysis coupled to TG revealed the deposition of a significant amount of an apatite component on the surface of the PCL/CAp composite as well as in its interior, showing a good in vitro mineralization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call