Abstract

BackgroundTurmeric is a rich source of bioactive compounds useful in both medicine and cuisine. Mineral concentrations effects (PO43−, Ca2+, Mg2+, and KNO3) were tested during in vitro rhizome development on the ex vitro content of volatile constituents in rhizomes after 6 months in the greenhouse. A response surface method (D-optimal criteria) was repeated in both high and low-input fertilizer treatments. Control plants were grown on Murashige and Skoog (MS) medium, acclimatized in the greenhouse and grown in the field. The volatile constituents were investigated by GC-MS.ResultsThe total content of volatiles was affected by fertilizer treatments, and in vitro treatment with Ca2+ and KNO3; but PO43− and Mg2+ had no significant effect. The content was higher in the high-input fertilizer treatments (49.7 ± 9 mg/g DM) with 4 mM Ca2+, 60 mM KNO3 and 5 mM NH4+, than the low-input fertilizer (26.6 ± 9 mg/g DM), and the MS control (15.28 ± 2.7 mg/g DM; 3 mM Ca2+, 20 mM K+, 39 mM NO3−, 20 mM NH4+, 1.25 mM PO43−, and 1.5 mM Mg2+). The interaction of Ca2+ with KNO3 affected curcumenol isomer I and II, germacrone, isocurcumenol, and β-elemenone content. Increasing in vitro phosphate concentration to 6.25 mM increased ex vitro neocurdione and methenolone contents.ConclusionThese results show that minerals in the in vitro bioreactor medium during rhizome development affected biosynthesis of turmeric volatile components after transfer to the greenhouse six months later. The multi-factor design identified 1) nutrient regulation of specific components within unique phytochemical profile for Curcuma longa L. clone 35–1 and 2) the varied phytochemical profiles were maintained with integrity during the greenhouse growth in high fertility conditions.

Highlights

  • Turmeric is a rich source of bioactive compounds useful in both medicine and cuisine

  • In vitro treatments including minerals, plant density, and fed-batch techniques applied during 5 months of micropropagation in fed-batch bioreactors [17] effects the plant quality during the subsequent 6 months of greenhouse growth where rhizomes continue to attain mass. These effects include both the relative fresh mass gain of nursery plants [20] and the concentration of curcuminoids in the rhizome following a season of growth [19]. This current paper investigated the effects of the in vitro treatments and fertilizer treatments on the Gas chromatography-mass spectrometry (GC-Murashige and Skoog (MS)) profile and content of C. longa rhizomes in the greenhouse by using a multi-factor response surface method (RSM)

  • Qualitative and relative-quantitative analysis of volatile constituents GC-MS analysis of the hexane extract showed that sesquiterpenes represented the major components of the GC-MS chromatogram of C. longa, comprising > 65% of total peak area

Read more

Summary

Introduction

Turmeric is a rich source of bioactive compounds useful in both medicine and cuisine. Mineral concentrations effects (PO43−, Ca2+, Mg2+, and KNO3) were tested during in vitro rhizome development on the ex vitro content of volatile constituents in rhizomes after 6 months in the greenhouse. Results: The total content of volatiles was affected by fertilizer treatments, and in vitro treatment with Ca2+ and KNO3; but PO43− and Mg2+ had no significant effect. The content was higher in the high-input fertilizer treatments (49.7 ± 9 mg/g DM) with 4 mM Ca2+, 60 mM KNO3 and 5 mM NH4+, than the low-input fertilizer (26.6 ± 9 mg/g DM), and the MS control (15.28 ± 2.7 mg/g DM; 3 mM Ca2+, 20 mM K+, 39 mM NO3−, 20 mM NH4+, 1.25 mM PO43−, and 1.5 mM Mg2+). Terpenoids occur in a large variety of mono- and sesquiterpenes in Curcuma [4] Their synthesis in leaves and the accumulation of. Commercial scale fed-batch bioreactors (10,000 to 20,000 L) used to produce ginseng saponins from Panax ginseng root culture have achieved high yield [18]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.