Abstract

Drug precipitation invivo poses a significant challenge for the pharmaceutical industry. During the drug development process, the impact of drug supersaturation or precipitation on the invivo behaviour of drug products is evaluated with invitro techniques. This review focuses on the small and full scale invitro methods to assess drug precipitation in the fasted small intestine. Many methods have been developed in an attempt to evaluate drug precipitation in the fasted state, with varying degrees of complexity and scale. In early stages of drug development, when drug quantities are typically limited, small-scale tests facilitate an early evaluation of the potential precipitation risk invivo and allow rapid screening of prototype formulations. At later stages of formulation development, full-scale methods are necessary to predict the behaviour of formulations at clinically relevant doses. Multicompartment models allow the evaluation of drug precipitation after transfer from stomach to the upper small intestine. Optimisation of available biopharmaceutics tools for evaluating precipitation in the fasted small intestine is crucial for accelerating the development of novel breakthrough medicines and reducing the development costs. Despite the progress from compendial quality control dissolution methods, further work is required to validate the usefulness of proposed setups and to increase their biorelevance, particularly in simulating the absorption of drug along the intestinal lumen. Coupling results from invitro testing with physiologically based pharmacokinetic modelling holds significant promise and requires further evaluation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.