Abstract

Ruminant products are the major source of CLA for humans. However, during periods of fat mobilization, the liver might play an important role in CLA metabolism which would limit the availability of the latter for muscles and milk. In this context, rumenic acid (cis-9, trans-11 CLA) metabolism in the bovine liver (n = 5) was compared to that of oleic acid (n = 3) by using the in vitro liver slice method. Liver slices were incubated for 17 h in a medium containing 0.75 mM of FA mixture and 55 microM of either [1-(14)C] rumenic acid or [1-(14)C] oleic acid at 37 degrees C under an atmosphere of 95% O(2)-5% CO(2). Rumenic acid uptake by liver slices was twice (P = 0.009) that of oleic acid. Hepatic oxidation of both FA (> 50% of incorporated FA) led essentially to the production of acid-soluble products and to a lower extent to CO(2) production. Rumenic acid was partly converted (> 12% of incorporated rumenic acid) into conjugated C18:3. CLA and its conjugated derivatives were mainly esterified into polar lipids (71.7%), whereas oleic acid was preferentially esterified into neutral lipids (59.8%). Rumenic acid secretion as part of VLDL particles was very low and was one-fourth lower than that of oleic acid. In conclusion, rumenic acid was highly metabolized by bovine hepatocytes, especially by the oxidation pathway and by its conversion into conjugated C18:3 for which the biological properties need to be elucidated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call