Abstract

Synthetic cathinones, one of the most prevalent categories of new psychoactive substances, have been posing a serious threat to public health. Methylmethcathinones (MMCs), notably 3-MMC, have seen an alarming increase in their use in the last decade. The metabolism and toxicology of a large majority of synthetic cathinones, including 3-MMC and 2-MMC, remain unknown. Traditionally, male-derived liver materials have been used as in vitro metabolic incubations to investigate the metabolism of xenobiotics, including MMCs. Therefore, little is known about the metabolism in female-derived in vitro models and the potential sex-specific differences in biotransformation. In this study, the metabolism of 2-MMC, 3-MMC, and 4-MMC was investigated using female rat and human liver microsomal incubations, as well as male rat and human liver microsomal incubations. A total of 25 phase I metabolites of MMCs were detected and tentatively identified using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Seven sex-specific metabolites were detected exclusively using pooled male rat liver microsomal incubations. In addition, the metabolites generated from the sex-dependent in vitro metabolic incubations that were present in both male and female rat liver microsomal incubations showed differences in relative abundance. Yet, neither sex-specific metabolites nor significant differences in relative abundance were observed from pooled human liver microsomal incubations. This is the first study to report the phase I metabolic pathways of MMCs using in vitro metabolic incubations for both male and female liver microsomes, and the relative abundance of the metabolites observed from each sex.Graphical abstract

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.