Abstract

In vivo, mammalian oocytes are surrounded by granulosa cells (GCs) that exist in a three-dimensional (3D) microenvironment with soft stiffness. The GCs play an important role for the in vivo growth and development of oocytes, through bidirectional communication between oocytes and GCs. To mimic the cellular microenvironment of a 3D organized follicle, this study designed a co-culture system using porcine ovarian GCs (pGCs) encapsulated in agarose matrix for in vitro maturation (IVM) of pig oocytes. We report the effects of our newly designed co-culture system on IVM and development of pig oocytes. Immature cumulus-oocyte-complexes (COCs) were matured on a 1% (w/v) agarose matrix encapsulated without or with pGCs. The number of pGCs within the agarose matrix was optimized by analyzing the in vitro development of parthenogenetic embryos. Moreover, the role of the ovarian stromal pGCs as feeder cells was assessed by analyzing the PA embryonic development. Subsequently, the effect of pGCs encapsulated in a 3D agarose matrix was evaluated for the developmental competence of pig oocytes by analyzing blastocyst formation after parthenogenetic activation (PA), intra-oocyte GSH and ROS contents, expression levels of BMP15 and BAX, TUNEL (terminal deoxynucleotidyl transferase-mediated d-UTP nick end-labeling) assay, protein expression levels of BMP15, and intra-oocyte ATP levels. The optimized number of pGCs (5 × 104 cells/well) in a 3D agarose matrix led to a significantly higher blastocyst formation, increased BMP15 gene and protein expression, and intra-oocyte ATP levels; moreover, it induced significantly lower intra-oocyte ROS contents, pro-apoptotic BAX gene expression, and apoptotic index, compared to control. Our results demonstrate that application of pGCs as feeder cells encapsulated in the agarose matrix for IVM effectively increases the developmental competence of porcine oocytes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.