Abstract
Recently, pulse ingredients with (partial) cellular intactness are put forward as promising innovative food ingredients with slowed macronutrient digestibility. This study compared cooking quality and nutrient (starch, protein, and mineral) digestibility/bioaccessibility of lentil-based pasta prepared from 100% raw-milled flour, and by substituting 30% of the formulation by isolated cotyledon cell powder or whole precooked powder. Formulation had little effect on cooking properties. Both amylolysis and proteolysis were significantly slowed by incorporating cellular ingredients: towards the end of simulated digestion, amylolysis was lowered by 16–25%, while differences in proteolysis became small. Cellular ingredient incorporation slightly decreased Zn and Mg but did not affect Ca and Fe bioaccessibility, overall yielding a low mineral bioaccessibility comparable to cooked whole pulses. To conclude, lentil-based pasta substituted with cellular ingredients showed improved nutritional properties (i.e., high in digestible protein and slowed amylolysis), with perspectives for the development of different innovative foods with targeted nutritional properties.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.