Abstract

A novel series of symmetric double-chained primary and tertiary 1,3-dialkoylamido monovalent cationic lipids were synthesized and evaluated for their transfection activities. In the absence of the helper lipid DOPE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine), only the primary and tertiary dioleoyl derivatives 1,3lmp5 and 1,3lmt5, respectively elicited transfection activity. This is a striking difference between symmetrical 1,2-diacyl glycerol-based monovalent cationic lipids that always found both dioleoyl and dimyristoyl analogues being efficient transfection reagents. In the presence of helper lipid, all cationic derivatives induced marker gene expression, except the dilauroyl analogues 1,3lmp1 and 1,3lmt1 that elicited no transfection activity. Combining electrophoretic mobility data of the lipoplexes at different charge ratios with transfection activity suggested two requirements for high transfection activity with monovalent double-chained cationic lipids, that is, binding/association of the lipid to the plasmid DNA and membrane fusion properties of the lipid layers surrounding the DNA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call